Text from Complex Plot www pages :

" ... one of these intertwining maps, called the

Using program mandel : "The modulus of the Koenigs coordinate is already shown in mode 0, when the period is at most 4." ( Wolf Jung )

- Schroder's equation - wikipedia
- Koening coordinates by Inigo Quilez
- "Help on Koenigs coordinates II " discussion on sci.fractals
- Critical points and Fatou theorem by Evgeny Demidov
- Gabriel Koenigs - Biographie at The Mathematics Genealogy Project
- Five Proofs of the Theorem of Koenigs by Lennart Carleson and Theodore W. Gamelin
- complex plot
- P.S. Bourdon, Convergence of the Koenigs sequence, Contemporary Math. 213 (1997), 1-10.
- P.S. Bourdon and J.H. Shapiro, Mean growth of Koenigs eigenfunctions, Journal Amer. Math. Soc., 10 (1997), 299-325.
- P.S. Bourdon, Essential angular derivatives and maximum growth of Koenigs eigenfunctions, Journal of Functional Analysis, to appear.
- E. Clarkson, Complex Plot: A visual aid in examining analytic functions, Washington and Lee Journal of Science, to appear.
- D. S. Bennett and J. M. Carr, Researching Linear Fractional Models, W&L J. of Science 2, (1992), 20-22.
- Poggi-Corradini, Norm convergence of normalized iterates and the growth of Koenigs maps, Arkivor Matematik, to appear.
- Poggi-Corradini, The Hardy class of geometric models and the essential spectral radius of composition operators, J. Funct. Anal., 141 (1997), 129-156.
- J. H. Shapiro, "Composition Operators and Classical Function Theory," Springer-Verlag, New York, 1993.
- G. Koenigs, Recherches sur les integrales de certaines equationes functionelles, Annales Ecole Normale Superior (3) 1 (1884), Supplement, 3-41.
- C. C. Cowen and B. D. MacCluer, "Composition Operators on Spaces of Analytic Functions," CRC Press, Boca Raton, 1995.
- I. N. Baker and Ch. Pommerenke, On the iteration of analytic functions in a half-plane, J.London Math. Soc. (2) 20 (1979), 255-258.
- C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69-95.
- Ch. Pommerenke, On the iteration of analytic functions in a half-plane, J. London Math Soc. (2) 19 (1979), 439-447.
- G. Valiron, Sur l'iteration des fonctions holomorphes dans un demi-plan, Bull des Sci. Math. (2) 55 (1931), 105-128.
- P. Bourdon and J. Shapiro, Cyclic phenomena for composition operators, Memoirs of the Amer. Math. Soc., Number 596, 1997.
- Mark Elin, Victor Goryainov, Simeon Reich, and David Shoikhet : Fractional Iteration and Functional Equations for Functions Analytic in the Unit Disk. Computational Methods and Function Theory Volume 2 (2002), No. 2, 353–366
- Studies on composition operators: proceedings of the Rocky Mountain Mathematics Consortium, July 8-19, 1996, University of Wyoming. Contemporary mathematics (American Mathematical Society) ; v. 213 July 8-19, 1996, University of Wyoming, Farhad Jafari Jafari, Rocky Mountain Mathematics Consortium Ed.: Farhad Jafari, Rocky Mountain Mathematics Consortium Publisher : AMS Bookstore, 1998 ISBN 0821807684, 9780821807682 pages 252

Autor: Adam Majewski adammaj1-at-o2-dot-pl

Feel free to e-mail me. (:-))

About

fraktal.republika.pl